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This paper describes two recentinnovations related to the restarted Lanczos method
for eigenvalue problems, namely the thick-restart technique and dynamic restarting
schemes. Previous restarted versions of the Lanczos method use considerably more
iterations than the non-restarted versions, largely because too much information is
discarded during restarting. The thick-restart technique provides a mechanism to
preserve a large portion of the existing basis and dynamic restarting schemes decide
exactly how many vectors to save. Combining these two new techniques we are able
to implement an efficient eigenvalue problem solver. This paper will demonstrate its
effectiveness on one particular class of problems for which this method is well suited:
linear eigenvalue problems generated from non-selfconsistent electronic structure
calculations. © 1999 Academic Press

Key WordsLanczos method; thick-restart scheme; electronic structure calculation;
empirical pseudopotential method.

1. INTRODUCTION

The Lanczos method is a very simple and yet effective algorithm for finding extre
eigenvalues of large matrices. Since it only needs to access the matrix through matrix-v
multiplications, the user has the flexibility of choosing the most appropriate matrix-vec
multiplication scheme to reduce computer memory usage and the computation time. T
is never any need to explicitly store the full matrix which can be prohibitively large in ma
electronic structure calculations. There are two common ways of implementing the Lan
method depending on whether or not the Lanczos vectors are stored. When the Lar
vectors are not stored, they have to be recomputed when needed for re-orthogonalizat
computing eigenvectors. This scheme is usually used without re-orthogonalization and

1 The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering
paper, for governmental purposes, is acknowledged.
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to compute eigenvalues. Since there is no re-orthogonalization, the Lanczos vectors
lose orthogonality after a number of steps and the Lanczos method may generate spt
solutions [1, 2]. Though spurious eigenvalues can be effectively identified, however,
Lanczos steps would be needed if the orthogonality is maintained. If the eigenvec
are also wanted, the Lanczos iterations are repeated after the eigenvalues are founc
is a significant amount of additional work. For the applications under consideration, t
eigenvalues and eigenvectors are needed, therefore itis more appropriate to store the L
vectors. When the Lanczos vectors are stored, the loss of orthogonality problem ce
corrected by re-orthogonalization [3-5] and no spurious eigenvalues are generated. Be
each Lanczos step generates one vector, alarge amount of computer memory may be re
to store all the Lanczos vectors. If the re-orthogonalization is necessary, the time ne
to carry out a Lanczos step increases as more Lanczos vectors are generated. Fol
reasons, the Lanczos algorithm that stores the Lanczos vectors is usually restarted ¢
certain number of steps.

The restarted versions often use considerably more matrix-vector multiplications thal
non-restarted version to compute the same eigenvalues. In recent years, newly deve
restarting strategies have significantly reduced the number of matrix-vector multiplicati
used for other restarted eigenvalue methods. The two most successful ones are th
plicitly restarted Arnoldi method [6, 7] and the dynamic thick-restart Davidson meth
[8, 9]. Compared to the Arnoldi method and the Davidson method, the Lanczos met
uses less arithmetic operations per step. Therefore we would like to apply these re:
ing strategies on the Lanczos method. The implicitly restarted Lanczos method has
studied elsewhere [10] and implemented in ARPACK [6]. Here we describe a thick-res
Lanczos method. Because the thick-restart procedure is only a slight modification o
Rayleigh—Ritz procedure, it is easier to implement than the implicitly restarted Lanc
method. More importantly because we have conducted a detailed analysis of exactly
many Ritz pairs to save during restarting, our implementation of the thick-restart Lanc
method is considerably more effective than ARPACK on most of the eigenvalue probl
tested [11].

Many electronic structure calculations result in a non-linear eigenvalue problem wt
the lowest eigenvectors, corresponding to the electronic states of the physical syster
required. This problem is normally solved by iterating a linearized form of the non-line
problem, to self-consistency. In these cases it is advantageous to extrapolate from pre
steps to produce a good starting guess for the eigenvectors of the next step in the
consistent iteration. For this reason iterative eigen-solvers that can take advantage of a
starting guess such as the Davidson method [12] and the conjugate gradient (CG) m
[13], are the most commonly used. Since the simple Lanczos method cannot take an ark
number of starting vectors, it is more appropriate for linear eigenvalue problems. The
problems chosen in this paper are calculations of quantum dot structures with empi
pseudopotentials [28, 14] resulting in linear eigenvalue problems.

The goal of this paper is to introduce two new innovations on the Lanczos method tc
reader and show the effectiveness of the improved method through a number of exan
We will compare the new variations of the Lanczos method against the older variations
demonstrate that the new methods scale well as the number of required eigenvaluesinc
and as the matrix size increases. We will also discuss how the Lanczos method com
the eigenvectors associated with a degenerate eigenvalue and how to choose appr
parameters in order to achieve the correct multiplicity.
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Because the algorithm used in this paper is not yet widely known, we state the algor
and the restarting strategy so that the reader can implement his or her own version ¢
program. The main body of the algorithm is described in Section 2. A number of rest
ing strategies are discussed in Section 3. After describing the new algorithm, we pre
comparisons against other versions of the Lanczos method and the scaling properti
the new methods in Section 4 and discuss the question of computing degenerate eig
ues and the workspace requirement in Section 5. Some concluding remarks are giv
Section 6.

2. THE THICK-RESTART LANCZOS ALGORITHM

The thick-restart Lanczos algorithm combines the Lanczos algorithm with the thi
restart technique to form a new restarted eigenvalue method. It is designed to solve
metric or Hermitian eigenvalue problems of the form,

AX = AX,

where A is the matrix,A is an eigenvalue of\, andx is the corresponding eigenvector.
The Lanczos eigenvalue method computes approximate valuearafx which will also
be denoted by andx. Typically as more Lanczos steps are performed, the approxim
values become closer to the exact values. The effectiveness of the method can be me:
by the time it needs to compute the solutions to a desired level of accuracy.

The Lanczos method for eigenvalue problems has two conceptually distinct parts,
to construct the Lanczos basis and the other to compute the approximate solutions us
projection method usually the Rayleigh—Ritz projection [4]. The approximate eigenval
and eigenvectors computed using the Rayleigh—Ritz projection are commonly referre
as the Ritz values and the Ritz vectors [4] and the vectors of the Lanczos basis are
known as the Lanczos vectors. In the restarted Lanczos algorithm the two basic ste
constructing a basis and performing the projection are carried out as usual. However,
a specified number of Lanczos vectors are built, a linear combination of the basis ve
is selected to start the Lanczos algorithm again by using the same workspace to stol
new basis vectors. The thick-restart Lanczos algorithm [15] is a particular version of
restarted Lanczos method. It differs from the simple restarted Lanczos method in that i
save an arbitrary portion of the current Lanczos basis. This flexibility can be effectiv
used to enhance the performance of the restarted Lanczos method as demonstrated
implicitly restarted Lanczos method [10] which is mathematically equivalent to the thic
restart Lanczos method [15]. Compared to the implicitly restarted Lanczos method,
thick-restart Lanczos method is simpler in two ways. The thick-restart procedure is c
a slight modification of the Rayleigh—Ritz procedure and therefore it is simpler than
implicit restart procedure. The implicitly restarted Lanczos method needs a post-proces
step to compute the eigenvectors after the eigenvalues are computed. The thick-r
Lanczos method does not need this step [7, 15].

The thick-restart Lanczos method described next is suitable for floating-point arithm
implementation. The main difference between this one and the one for exact arithme
that this one has @e-orthogonalizatiorstep. The re-orthogonalization scheme shown he
includes a local re-orthogonalization and a global re-orthogonalization. It guarantees
the Lanczos vectors are orthogonal to machine precigipand coefficients; andg; are
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accurate to the order ef| A||. This ensures no spurious solutions are computed and it allo
us to compute both eigenvalues and eigenvectors simultaneously.

Assuming there is enough computer memory to store 1 Lanczos vectors, the thick-
restart Lanczos algorithm progressively builds its basis vectors as follows.

ALGORITHM 1.

Initialization
To start solving a new eigenvalue problem, take a starting vector, normalize it
store the result iy (k=0).
When restarting, the quantities, ..., o, B1, ..., Bk, 01, - - - » Gk, @andgk,1 shall

satisfy
AG =it + Bidks1, 1 =1...,k 1)
Iterate
Fori=k+1,...,m,
1. Qi+1= Aq '
2. qi :qiTQH-l,
3. orthogonalization:
Ifi>k+1,
Oiy1<Cis1— 0 — Bi—1Gi-1, (2
else
k
Gir1<Ciy1 — @iCf — Zﬂj%* ©))
j=1

4. re-orthogonalization:

o Ifi>k+1,n=0a?+p2,, elsen=a?+ Zij(:l B?.
o If qiTHqu > n, perform the local re-orthogonalization

Gi+1< Git1—GiG Gise — G20 1Gi+1, (4)

else ifqiT+1Qi +1 > €°n, perform the global re-orthogonalization

[
Gii<eGir— »_0i0] G, (5)
j=1
else, replace; 11 with a random vector that is orthogonal | [. . ., g].
o Before updatingj .1 using Eq. (4) or (5), replaag by o+ g .1 However,
do not modifye; if g1 is replaced by a random vector.

5. normalization: g = |G 11|, Gi 1< Ci+1/Bi-
If gi+1 is a random vector, sg to zero afteiqi ., is normalized.

The second part of the algorithm performs the Rayleigh—Ritz projection. As in the us
projection step of any eigenvalue method, it computes the Ritz values and the Ritz vec
The main difference is that it also prepares the quantities involved in Eq. (1) to allow
thick-restart Lanczos algorithm to restart with an arbitrary number of vectors. We will o
give the basic procedure in this section and leave the discussion on exactly how may ve
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to save, i.e., the restarting strategies, to the next section. For convenience of desct
the restarting procedure, we defiQ@g =[ds, . . ., dm] and T = QL AQm. No computation
is required to generat€;, since it can be assembled fram, ..., om andgy, ..., Bm-1-.
Because the Lanczos vectd@s, are orthogonal to machine precision in the proceedir
algorithm, the matrixT,, is accurate as well. This in turn ensures the Ritz values and t
Ritz vectors are accurate and Eq. (1) is satisfied to machine precision,

a B1
ak Bk
Tm=|B1 - B k1 Praa ) (6)
Bri1 Qks2
Bm-1
Bm-1 om

ALGORITHM 2. Restarting scheme

1. Find all eigenvalues and eigenvectorsTgf T,Y =Y D, where the columns of
are eigenvectors and the diagonal element® aire the eigenvalues. The Ritz

values arel ;i =1,...,m.
2. Choose&k Ritz values to be saved, denote the Ritz valueaias. ., A, and re-
number the corresponding eigenvectordgfasys, . .., Yk-

3. LetYu=][vy1,..., ¥, Gk+1= Oms1 and replace the firdt columns ofQ, with
Qm Yk, i.e., Ox = QmYi. The corresponding; ‘andg; are defined as

ai = A, Bi = BumYmi-i =1,....k (7

In the actual implementation, the quantiti®g, 1, & andg;, occupy the same storage as
the corresponding quantiti€d, 1, «i, andg;. We distinguish them here only to make cleal
what are new quantities to be used in the next Lanczos iteration and what are old quan
to be discarded. It is easy to verify thét(H, &, andB; satisfy Eq. (1) [15], which means
that they can be used to restart Algorithm 1. When entering Algorithm 1 for the first tir
it is hard to satisfy Eq. (1) witlk > 0. Thus the thick-restart Lanczos method is usuall
started initially with only one vector. It is easy to implement a block version of the abc
algorithm, in which case, a block of starting vectors can be used.

What makes the above algorithm different from the naive explicit restarted Lanc
method is thak is significantly larger than one. Whéns set to one during the restarting
phase, the thick-restart Lanczos algorithm reduces to a simple explicitly restarted Lan
algorithm. The explicitly restarted Lanczos algorithm is usually effective in finding o
extreme eigenvalue. On the other hand, saving a large number of vectors when restart
in the thick-restart Davidson method and the implicitly restarted Arnoldi method has b
shown to be effective in finding a few eigenvalues [10, 8, 9]. Methods that save a I
portion of the existing basis also work well when the maximum basismiie close to
the number of eigenvalues computed. For this reason, the ability to restart with an arbi
number of Ritz vectors is an important property of the new method.
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So far we have described all implementation details of the new algorithm except st
of the restarting procedure and how to perform convergence tests. Typical converg
tests for symmetric eigenvalue problems use either residual norms or estimated errors
eigenvalues. In the experiment reported later, we declare a Ritz pair converged if its res
norm s less than 1@, ||r; || = |Bi | <1075, The restarting strategies will be discussed in th
next section.

3. RESTARTING STRATEGIES

Two of the crucial decisions to be made during the thick-restart Lanczos algorithm
which Ritz pairs to save and exactly how many. Based on the analyses of Morgan |
saving the Ritz values near the wanted eigenvalues could enhance the convergenc
of the restarted methods. The saved Ritz vectors may not be accurate approximatic
their corresponding eigenvectors, but they approximately deflate the spectrum, increa:
separation between the wanted eigenvalue and the rest of the spectrum, and increa
convergence rate of the restarted Lanczos method. Since we only use the Lanczos m
to compute extreme eigenvalues, the Ritz pairs saved are those with the largest Ritz v
and the smallest Ritz values. The remainder of this section describes our attempt to ide
exactly how many Ritz pairs should be saved. There are other arguments that can be
to guide the design of restarting schemes. A comprehensive review can be found else\
[11]; in this section we will only describe two restarting strategies based on approxin
deflation.

The research work that is closely related to this one is the dynamic thick-restart sch
used in the dynamic thick-restart Davidson method [8]. In this paper the decision of |
many vectors to save is based on maximizing the effective gap ratio. Assumimg th
Ritz pairs are in ascending order of the Ritz values, if we are to save Ritz pairs, K

andk; + 1, ..., m, the effective gap ratio for computing the smallest eigenvalue is defin
to be
_ A — A1
Ao+l — A

When computing more than one eigenvalue, the gap ratio is initially computed with
outermost Ritz value as the reference. After the outermost eigenvalue has reached cc
gence, the effective gap ratjois computed with the next eigenvalue as the reference. F
example, if the smallest Ritz value has converged, the effective gap ratio is compute
y = (A, — 22)/ (A +1 — A2). The reference Ritz value serves a similar role as the target
the Davidson method [16] and we shall also call it the target in this paper.

Typically, the computed Ritz values are never exactly identical even if the correspon
eigenvalues are identical. In these cageis,a monotonic function if eithdq ork; is fixed.
The effective gap ratio increases as the difference betikeandk; decreases. For this
reason, the maximum is always achieved whelg =k + 1. This is usually not a good
choice since it requires one to perform Rayleigh—Ritz projection and computé Ritz
pairs after every matrix-vector multiplication. In practice, sawimg 1 Ritz vectors often
yields smaller residual norm reduction per matrix-vector multiplication than sawjt®y
Ritz pairs. To understand this, we notice that the definition of the effective gapyragio
only accurate if the Ritz values, ..., 1y are close to thdq smallest eigenvalues and
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Ak +1, - - -, Am are close to then—k; largest eigenvalues. Since is much smaller than
the size of matrixA ask; becomes closk: , the above conditions are not satisfied anid
significantly larger than the actual effective gap ratio.

To prevent an over-aggressive choicekpfor k;, researchers have previously chose
to enforce the condition ok. >k} + 3 [8]. After extensive testing, we found that the
following restriction gives much better timing results for the restarted Lanczos meth
ke >k -+ min(m — nejg, 2(M — N¢)/5), wheremis the maximum basis sizBeg is the num-
ber of eigenvalues to be computed, agd the number of desired eigenvalues that have co
verged already. In actual implementation, we only need to corlgidek; + min(m — nejg,
2(m —n)/5) when performing the search for the bestThis leads to a simpler searching
algorithm than in the previous implementation.

If the effective gap ratigv is accurate, after each Lanczos step, the residual norm of
target eigenvalue should decrease by a factor that is proportiomal' tfil7]. Based on
this, the above dynamic restarting scheme maximizes the expected residual norm redt
during each Lanczos step. An alternative approach is to consider maximizing the res
norm reduction for the entire restarted loogk Ritz pairs are saved, the Lanczos algorithn
can proceedn — k step before restarting. The residual norm is expected to decrease
a factor proportional t@=™-%7_ To maximize the residual norm reduction of the nex
restarted loop, we need to maximize

w=(m-Ky.

Sincep is not a monotonic function like, to find its maximum value, we need to compare
all possible choices d§ andk;. Our tests show thd¢ > ki + min(m — nejg, 2(M —nc)/5)
is also a reasonable restriction on the search range for this scheme.

It is possible to construct more dynamic restarting schemes based on either emp
observations or other heuristics. However, through our tests, we have found that the &
two schemes work well for the eigenvalue problems from electronic structure calculati
studied in this paper. More detailed studies of various dynamic restarting heuristics ca
found elsewhere [11].

4. TIMING RESULTS

In this section, we will use electronic structure calculations of semiconductor nano:
tems to demonstrate the effectiveness of our new method. The systems contain 5
250,000 atoms, thus far beyond the rangelofinitio calculations. To describe the elec-
tronic structures of such large systems, the empirical pseudopotential has been ust
this scheme [18], the total potential of the system is constructed from the superpositic
atomic screened pseudopotentialér) of atom typex. As a result, the Hamiltonian of the
system can be written as

~ 1
H =—§v2+ %jva(r—Ra), (8)

where the{R,} are the atomic positions of atom type which are obtained via a valence
force field calculation [19]. The empirical pseudopotentiair) is fitted to bulk band
structures and deformation potentials. The electronic structure of the system is obtaine
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TABLE |
Test Problems
No. of No. of
Name atoms plane-waves Description
InGaP512 512 6603 512-atom InGaP semiconductor alloy
InGaAs9k 9000 137,919 9000-atom InAs quantum dot system
INnGaAs93k 93,000 1,342,479 93000-atom InAs quantum dot system

INnGaAs250k 250,000 3,683,087 250000-atom InAs quantum dot system

solving Schrodinger’s equation

Hy(r) = ey (), 9)

where the wavefunctioff (r) is expanded using a plane wave basis.

This non-selfconsistent empirical pseudopotential scheme has been used to study
tum wells, superlattices, disordered superlattices, quantum wires, colloidal quantum:
embedded quantum dots, and composition modulations in alloys. Excellent agreement
the experiment have been obtained for single particle levels [20], exchange splitting |
optical absorption spectra [22], and the magnitudes-of coupling [23].

Asinmostelectronic structure calculations of semiconductor materials, the eigenvalu
the matrices fall into two distinct groups, the smaller ones form a group known as the vals
band and the larger ones the conduction band. Typically, the eigenvalues of interest
those near the band gap because they are directly related to observable electronic pro
[25]. Using the empirical pseudopotential schemes, it is possible to directly compute tl
eigenvalues and their corresponding eigenvectors without computing all the valence
states. Since the goal of this paper is demonstrate the capability of the eigenvalue methc
have decided to only report the timing results for computing a number of lowest conduc
band states. Inthe cases where the valence band states are also computed, we observe
performance characteristics as reported here.

Brief descriptions of the test problems used are listed in Table I. All InAs quant
dots listed are embedded in a GaAs lattice matrix. Hedenote the discrete form of the
Hamiltonian given by the empirical pseudopotential method. We compute the conduc
band states by computing the smallest eigenvalu@d 6f E,¢f)? [28] with E,ef chosen to be
—4.4 eV which is in the band gap and is near the top of the gap. The ntatisxHermitian.
The eigenvectors are represented as plane-waves and all calculations are done at the (
point. Because of the gamma point symmetry, only half of the plane-wave coefficients r
to be stored. The number of plane-waves reported in Table | are the number of plane-
coefficients that are actually stored in computer memory.

Timing results in Table Il were obtained on a massively parallel computer, the C
T3E 900, located at National Energy Research Supercomputer Cevitdf\VEC in this
table denotes the number of matrix-vector multiplications used to compute the solut
The computationally intensive part of the matrix-vector multiplication uses parallel, thr
dimensional FFTs optimized for the Cray T3E where the matrix to be diagonalized is ne
explicitly formed [26].

1NERSC can be accessed through the wettap: //www.nersc.gov.
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TABLE Il
Time (s) Used to Find 5 Lowest
Conduction States of InGaP512

Method MATVEC  Time (s)
PLANSO 2578 473.6
PLANSO-lock  >20,000 >530
maxy —3 3512 109.7
maxy 2936 84.3
maxu 2737 78.0

The Lanczos methods used in Table Il are all built on top of a matrix-vector multiply whi
is user-supplied, so the relative performance and scalability of the methods on diffe
machines depends chiefly on the performance of the matrix-vector multiply. This is |
true for PLANSO which spends a significant amount of time in the re-orthogonalization. [
to the nature of the electronic structure calculation used in this paper the majority of the:
in the matrix vector multiplication is spent in the calculation of the three-dimensional FF
On parallel machines 3d FFTs are typically written on top of a native 1d FFT subroutine
global transformations. The performance on different machines will therefore depend ot
relative speeds of the native FFT routines and also, in the case of parallel machines, ¢
bandwidth and latency of the communication network used in the global transformati
Parallel computers such as the T3E, which has a very fast communication network a
relatively fast native FFT, will perform well for this problem.

Our first set of tests is performed on the smallest test problem, InGaP512. It is use
identify the restarting scheme that works well for this type of problems. Table Il shows
time (seconds) used by a number of different Lanczos methods on 8 Processing Eler
(PE) of the T3E. In addition to the thick-restart Lanczos method, we also used a pacl
called PLANSO [24] in two different ways. The PLANSO package implements the Lanc:
method with partial re-orthogonalization [4, 5]. The row headed by PLANSO uses PLAN
without restarting. Because this is a very small test problem, we are able to store as t
(2578) Lanczos vectors as necessary to compute the five smallest eigenvaHies Bfqr)2.
For larger matrices, the non-restarted Lanczos method usually requires more memory
is available on the T3E, thus, itis not a widely available option. The other four methods €
store 25 Lanczos vectors. PLANSO-lock represents a common way of restarting the Lar
algorithm. The program has allocated enough space to store 25 Lanczos vectors. Whe
workspace is filled, the Rayleigh—Ritz projection is invoked to compute five approxim
solutions. If any of them have converged, it will be locked and only used in orthogonaliz
new Lanczos vectors. We can either restart the Lanczos method by taking one of the
vectors or taking a linear combination of the Ritz vectors. However, neither of the two w
successful in reaching desired accuracies within 20,000 matrix-vector multiplications.
530 seconds recorded in Table Il is the time used to run the algorithm for 20,000 s
(20,000 matrix-vector multiplications).

The last three rows of Table Il are from using the thick-restart Lanczos method v
different restarting strategies. Row three (max 3) uses the dynamic restarting schem
used earlier [8] which always saves— 3 vectors when restarting. Row four (ma3
shows the time used when the thick-restart Lanczos method uses our new implement
to maximize the effective gap rati. The main difference between these two is that le:
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Ritz pairs are saved in the latter one. Because it computes less Ritz vectors, the rest
processis cheaper than before. In addition, each restartloop can carry out more matrix-\
multiplications and therefore generate more new information for the subsequent Rayle
Ritz projection. This leads to better approximate solutions with the newer scheme. In
particular example, 3512 Lanczos steps are taken with the former restarting strategy
2936 steps, or, 16% less steps, are used with the latter strategy, and 23% less timeisr
using the latter one. The time used by the Lanczos method with the strategy of maximi
residual norm reduction of the whole restarted loop (maxsee last row of Table I, is
the smallest in the table. It uses almost 30% less time than restarting with the,(max
method and it is significantly better than the naive restart scheme (PLANSO-lock).

Earlier, we mentioned that the restarted Lanczos methods use more iterations tha
non-restarted versions that perform re-orthogonalization. Since each Lanczos iteration
one matrix-vector multiplication, the data shown in Table Il confirm the observation. Hc
ever, the Lanczos method using the new restarting strategies needs less iteration:
using the older strategies. In fact, the thick-restart Lanczos method that maxumizdy
uses 6% more iterations than PLANSO. However, it only uses one-sixth of the time
PLANSO. This difference in time is mostly due to the difference in time spend in |
orthogonalization. PLANSO saves all Lanczos vectors it ever computed; when it perfo
a re-orthogonalization it orthogonalizes against all of them. Each re-orthogonalizatio
very expensive near the end of the iterations. The restarted Lanczos method only sg
small number of vectors so that each re-orthogonalization is much cheaper. Even thot
uses more matrix-vector multiplications and more re-orthogonalizations it still uses sig
icantly less time.

The timing results shown in Table Il are fairly representative of other tests we h
conducted on this type of eigenvalue problems. In many cases, the new restarting sc
of maximizingu is more effective than others. For this reason, we will only show resu
using this restarting strategy with the thick-restart Lanczos method, in the rest of this p:
Next, we will show how the new method scales with the number of eigenvalues and
matrix sizes.

Figure 1 shows the time used to compute different numbers of conduction band s
of the InGaAs9k test problem on 32 processors of the Cray T3E. The eigenvalues
eigenvectors ofH — Ee)? are computed using the thick-restart Lanczos method that tr
to maximizen when restarting. When computingig eigenvalues, the Lanczos basis size i
M = Neig+ 50. In other words, the timing results shown in Fig. 1 are generated by allow
the Lanczos method to use the fixed amount of workspace in addition to the space requil
store the eigenvectors. The line going through the data points represents a linear regre
of the log of time versus the log ofig and the slope indicates that to compute twice &
many eigenvalues and eigenvectors the restarted Lanczos method used about 60%
time (t o ng;;). The exact difference in time is a function of the spectrum distribution
well as the method used to compute the eigenvalues. Given a different type of eigen
problem, the exact scaling factor may change. Here we offer an intuitive explanation
the sub-linear scaling observed and a more precise analysis can be found elsewhere
While computingh; andxj, the thick-restart scheme also saves the nearby Ritz pairs. WI
A1 andx; reach convergencep andx, are nearly converged too. After the first eigenvalu
is computed, much less time may be needed in order to compute the second one.

The second type of scaling studied here is to see how the new method behaves
the problem size increases. Figure 2 shows the aggregate time used by the thick-r
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FIG. 1. Time (s) used to compute different numbers of conduction band states of InGaAs9k.

Lanczos method to solve the different sized empirical pseudopotential calculations.
four problems listed in Table | are used. The time shown in the figure is the aggregate
used by all processors to compute the five lowest conduction band states. Table 111 s
the number of processors and the elapsed time. As the problem size increases, we ust
processors and larger Lanczos bases. The line in Fig. 2 is a linear regression of the
more precisely, the log of time versus the log of problem size, and its slope indicatt
scaling factor of roughly of 2, i.e., the aggregate time used is proportionai'te, where

n is the number of plane-wave bases used. The time used by the Lanczos method ¢
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FIG. 2. Aggregate time (s) used to compute conduction band states of different size test problems.
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TABLE 11l
Elapsed Time (s) Used to Compute Five Conduction Band
States of the Test Problems

Name m No. of PE MATVEC Time
InGaP512 25 8 2737 78.0
InGaAs9k 50 32 5458 1096.2
INnGaAs93k 100 64 4021 8021.8
INnGaAs250k 200 256 3107 3782.4

faster than linear because most of its components scale super-linearly. For example
time to apply the Hamiltonian on a vector scales &sy(n), the Gram—-Schmidt procedure
used to perform re-orthogonalization scalesmas and the time needed to compkt®itz
vectors during restarting procedure scalekras In addition, as more processors are use
there is more communication overhead which is also contributing to the total time grow
faster than linear. Of course, as the problem size changes, the spectrum also changes
affects the total time because different numbers of Lanczos steps are needed. Typica
problem size increases, more steps are needed to compute the same number of eigen
and therefore more time will be used.

We have also performed a series of tests by directly computing the smallest eigenv:
of H. The scaling factors observed for these calculations were close to those observe
computing the conduction band edge states. On this set of test problems, the thick-ri
Lanczos method scales well with both the number of eigenvalues and the matrix size. N
eigenvalue problems from electronic structure calculations have similar characteristic
the test problems and we expect the thick-restart Lanczos method to work well for ti
cases.

5. QUALITY OF SOLUTIONS AND WORKSPACE REQUIREMENT

In the previous section we have demonstrated that the new method uses less time
some of the older versions of the Lanczos method and the new one scales well as the pr
size increases. This section addresses two issues that worry the application progran
particularly those who perform electronic structure calculations: the Lanczos method i
able to compute all eigenvectors of a degenerate eigenvalue and it requires more work
than other methods such as CG.

Electronic structure calculations often give rise to degenerate or near degenerate €
values and it is crucial that all eigenvectors are found. In exact arithmetic, the Lanc
method can only compute one eigenpair from each degenerate set. In order to rel
compute multiple eigenvectors of a degenerate eigenvalue, one either uses a block ve
of the Lanczos method or adds locking to the standard Lanczos method. To see ho
thick-restart Lanczos method computes degenerate eigenvalues, we start by examini
convergence history.

Figure 3 shows the convergence history of solving the InGaP512 test problem wi
has higher degeneracy than the others. The top plot shows the five smallest Ritz v
of (H — Een? (in natural units, Rydbefy and the bottom plot shows their correspondiny
residual norms. Initially, the five smallest Ritz values are distinct. After about 700 Lanc
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FIG. 3. The convergence history of the thick-restart Lanczos method.

steps, the two smallest Ritz values have converged to the two smallest eigenvalues b
residual norms are only of the order of £0 After about 1400 steps, the third Ritz value
drops below the second one and approaches the smallest one. This indicates that the
eigenvector corresponding to the smallest eigenvalugHof- E)? has been identified.
After about 2200 steps, the third smallest Ritz value converges to the first two and
third eigenvector of the smallest eigenvalue appears. It takes roughly the same nu
of Lanczos steps to identify one eigenvector corresponding to the smallest eigenvall
(H — Eren?. In this case, about 700 Lanczos steps are needed to identify each eigenve
Similar observation have also been made in the case where the Lanczos algorithm is
with the partial re-orthogonalization but without restart; see Fig. 4. Previously, simi
convergence history has been observed in Lanczos methods without re-orthogonaliz
[27, 1]. However, the difference is that without re-orthogonalization the Lanczos mett
repeatedly generates the same eigenvector while with re-orthogonalization the eigenve
computed are distinct. Our explanation of the similarities is as follows. Because of
floating-point round-off error, the Lanczos basis is likely to contain a small componen
the direction of any eigenvector. It takes the Lanczos method about the same number of
to compute each eigenvector because the convergence rates are dictated by the eiger
which are the same for different eigenvectors of a degenerate eigenvalue. In additior
initial starting points can be regarded as the same for most eigenvectors since every
except the first, starts as a round-off error. Note that locking is not used in generating e
Figs. 3 or 4.

The above arguments show that the thick-restart Lanczos method is almost certa
find all eigenvectors of a degenerate eigenvalue. To ensure that no eigenvector is m
in the solution, we suggest two strategies, to compute more eigenvalues than neede
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FIG. 4. The convergence history of the Lanczos method without restart.

to ask for more accuracy than needed. From Figs. 3 and 4, we can identify five dis
horizontal lines in the Ritz value history and each of the lines represents an eigenv
of (H — Ee)?. If they were simple eigenvalues, the five smallest eigenvalues would
41x10% 51x10% 57x107% 6.1x 107, and 97 x 107“. Table IV shows the five
smallest Ritz values computed when different number of eigenvalues are requested. As
and more eigenvalues are requested, the five smallest Ritz values become closer and
to the five smallest eigenvalues. When requesting nine eigenvalues, the five smallest
display the correct degeneracy. Table V shows how the five smallest Ritz values chan
the tolerance changes. In this particular case, we need toteetomething less than 19

in order to get the correct solutions. The times to generate the solutions with the co
degeneracy are within 20% of each other in Tables IV and V. This indicates that the
schemes are almost equally effective. Both schemes need additional research to make
more rigorous. We offer the following rule-of-thumb for choosing parameters:

TABLE IV
The Smallest Five Ritz Values of H — E,1)> Computed When Asking
for Different neig (||ri|| < 107, m = 25)

time A1 Ao A3 Aa As
Neig MATVEC (s) (x107%)
5 2144 60.8 41 41 5.1 5.1 5.7
8 2123 63.4 41 41 5.1 5.1 5.7

9 3575 107.4 4.1 4.1 4.1 5.1 51
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TABLE V
The Smallest Five Ritz Values of H — E)?> Computed When Different
Residual Tolerances Are Used|(r|| <7, m=25)

time M A2 A3 Aa As
T MATVEC (s) (x10°%
108 712 20.3 41 5.1 6.1 9.7 15.0
10 1979 56.5 41 41 5.1 5.1 5.7
105 2144 60.8 41 41 5.1 5.1 5.7
10°° 2737 78.0 41 41 41 5.1 5.1
107 2956 84.4 41 41 41 5.1 5.1
108 3109 88.5 41 41 41 5.1 5.1

e when choosing the option of computing more eigenvalues than needed, compu
least five more eigenvalues or if computing a large number of eigenvalues compute
more;

e when using the residual tolerance as the control, make sure the vatuis tdss
than./e| All, wheree is the machine precision atid\|| is the two-norm or Frobenius norm
of the matrix.

Between the two schemes, we believe the second one, controllisgnore effective.
This is based on the observation that when all eigenvectors of a degenerate eigenval
identified the residual norms decrease rapidly and monotonically. This means that requ
addition accuracy does not cost a significant amount of extra time. In Tahle=\t,0~’
andr = 108 both lead to the correct solutions, but requiring: 10-8 only takes 5% more
time than requiring = 107, similarly requiringr = 10~7 only needs 8% more time than
requiringr = 107%. There are many cases where two eigenvalues are distinct but are |
to each other, e.g., eigenvalug % 10~ and 61 x 10~4, where the Lanczos method may
have similar difficulty to computing degenerate eigenvalues. The two schemes suggt
here should be reasonable approaches to deal with this case as well.

One parameter the user needs to choose when using a restarted Lanczos methoc
basis sizem. Next we will show that it is reasonably easy to pick a good valuenfor
Table VI shows the time required with differemtto compute the five lowest conduction
band states. From the table we see that the difference in time caused by diffeient
relatively small compared to the difference between using the thick-restart Lanczos me
and other versions of the Lanczos method; see Table II. Typically, whisrsmall, asm
increases, the time decreases. Aftemcreases to the optimal value, the minimum time
is achieved. Ifm increases further, the time increases slowly as shown in Table VI. T
user usually has to perform a small number of tests in order to identify a reasanabl
to use. For computingeig eigenvalues and eigenvectors, we suggest testiageig + 10

TABLE VI
Time (s) Used to Compute the Five Lowest Conduction Band
States of InGaAs9k Using Different Size Bases

m 50 60 75 100 200

Time 1096.2 1040.5 1063.1 1107.2 1299.2
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andm = neig + 20. If one of the two test cases fail to compute the solutions in a reasone
amount of time or the larger basis size works considerably better than the smaller one, a
largerm should be used. The basis sizes reported in Table Il can be used as a referen
solving similar types of problems. However, the values reported here are probably la
than necessary if one is to compute the smallest eigenvaluék rather than those of
(H - Eref)z-

One of the common complaints against the Lanczos method is that it uses more works
than CG. This is true in some cases. However, because a larger workspace, i.e.,ra,lart
often leads to a faster convergence rate, it is worthwhile to use more workspace if the
enough memory available. In addition, the thick-restart Lanczos method works well v
a constant amount of workspace as the number of eigenvalues increases as shown
If a large number of eigenvalues and eigenvectors are required, the thick-restart Lar
method may still need more workspace than some band-by-band versions of the CG me
however, it may actually need less workspace than some implementations of all-banc
methods.

6. CONCLUDING REMARKS

In this paper, we have given a practical version of the thick-restart Lanczos met
for symmetric and Hermitian eigenvalue problems and described two restarting strate
that we found to be effective. Through numerical examples, we have demonstrated
the thick-restart Lanczos method uses less matrix-vector multiplications (MATVEC) tt
earlier versions of the restarted Lanczos method. In all test examples, the new me
uses less time and also scales well as the problem size increases. The Lanczos met
commonly used to find a few eigenvalues and eigenvectors; our tests show that the t
restart Lanczos method is well suited for computing a larger number of eigenvalues
eigenvectors.

Many electronic structure calculations need to compute solutions of a set of rel:
eigenvalue problems [29]. In these cases, it is important to take advantage of the exi
solutions when solving the next eigenvalue problem. One way to do this is to use a li
combination of the eigenvectors from the previous step as the starting vector for the Lan
method [30, 31]. However, a version of the dynamic thick-restart Davidson method [8] mi
be more appropriate than the thick-restart Lanczos method. Even in this case, the rest
strategies described in this paper are still useful for the Davidson method.

Through the study of the convergence history, we conclude that the thick-restart Lan
method can compute all eigenvectors of degenerate eigenvalues. There is no eas
to detect that all eigenvectors are found; however, the two strategies, computing r
eigenvalues and requiring more accuracy, appear to work well in practice.

The Lanczos method often needs more workspace than some versions of the CG me
However, if there is a large amount of computer memory available, itis worthwhile to let
thick-restart Lanczos method use more workspace as this often leads to less time being
Clearly, the thick-restart Lanczos method is not for every type of eigenvalue problem. H
ever, inthe cases where itis appropriate, for example, when tens of eigenvalues are req
when there is reasonable amount of space to store some extra V@etensig > 10), or
when there isn't a large number of good starting vectors, we have demonstrated the
thick-restart Lanczos is an effective method.
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